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This work investigates the cyclotron motion of two Coulombically interacting ion clouds with
different mass-to-charge ratios. Trap geometry as well as the shape of each ion cloud determines the
maximum number of ions that can be confined in a Penning-like ion trap. We consider the two impor-
tant cases of either spherically or cylindrically shaped ion clouds. These models exhibit the most impor-
tant space charge effects in Fourier-transform ion cyclotron resonance mass spectrometry including fre-
quency shifts, amplitude and phase modulation, and phase locking. Both positive and negative frequen-
cy shifts are possible for spherical ion clouds when their cyclotron radii differ. Due to the Coulombic in-
eraction between ion clouds, both cyclotron-radius and phase modulation occur. This modulation in-
creases inversely to the cyclotron frequency difference. Cyclotron phase locking results when two ion
clouds have similar mass-to-charge ratios and a sufficiently large ion population, at which point a mass
spectrum shows only a single peak. Spherical ion clouds are usually more likely to phase lock than cy-
lindrically shaped clouds. The phase-locking threshold sets limits on the maximum resolution, mass ac-
curacy, and dynamic range achievable by mass spectrometry. Phase locking is treated in detail and our
results are compared to previously published experimental data. The present model quantitatively de-
scribes the onset of phase locking as well as the general trends in frequency shifts and measured abun-
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dances just before phase locking.

PACS number(s): 46.10.+z, 07.75.+h, 42.60.Fc, 82.80.Ms

I. INTRODUCTION

Fourier-transform ion cyclotron resonance (FT-ICR)
mass spectrometry has established itself as the best
method for obtaining precise and accurate mass deter-
minations of molecular species extending to the size of
large biomolecules [1-9]. Through the combination of
FT-ICR with soft ionization techniques including elec-
trospray [9—-12] and matrix assisted laser desorption ion-
ization [13-15], the realm of large molecules is accessi-
ble, increasing the interest in high resolution measure-
ments and high mass-to-charge (m /q) ratio ions [8,9].

The heart of the instrument is the ICR Penning tra
positioned in an ideally homogeneous magnetic field Bfg
directed along the z axis of the trap [4,16,17]. The mag-
netic field and trapping potentials ¥V, applied on the z
electrodes provide radial and axial confinement, respec-
tively. A single m /q ion (also conveniently expressed as
m /Z where m is the mass in u and Z is the number of
elementary charges per ion) executes a fundamental
periodic motion normal to the magnetic field at the cyclo-
tron frequency w,:

w,=qB/m=ZeB/m . (1)

An ICR mass spectrometer weighs ions by measuring
their cyclotron frequencies. In a cylindrical coordinate
system (r,6,z), positively and negative charged ions ro-
tate in the clockwise (—8) and counterclockwise (+8)
directions, respectively. For a quadrupolar trapping po-
tential the z motion is also periodic at a frequency w, and
the cyclotron frequency is slightly reduced from w, to a
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trapping voltage dependent cyclotron frequency w,. In
addition, the quadrupolar potential creates a radial elec-
tric field resulting in a slow E X B drift of the ion around
the trap symmetry axis at the magnetron frequency w_.
The effective cyclotron and magnetron frequencies o are

(18]
172
) . o

Bound motion is only possible provided o, >V2w, or
equivalently @ >w_. In the most basic FT-ICR experi-
ment, an ensemble of typically ~ 10 to 10° ions, consist-
ing of several or perhaps many different m /2Z’s, is
confined symmetrically about the ICR trap center. The
cyclotron modes of the individual ions are then excited
coherently by rf dipolar excitation at w to ideally the
same cyclotron radius. Each m /Z ion cloud induces an
image current with a frequency at @, on the detection
electrodes. (An ion cloud is defined here as a coherently
moving ion distribution of the same m /Z.) The mass
spectrum is easily obtained by the inverse relationship be-
tween m /q and cyclotron frequency w,, or more precise-
ly by a mass calibration based on Eq. (2) which includes
the trapping potential dependence [4,19]. Hence, if the
initial ensemble of ions contains two different m /2Z’s,
after cyclotron excitation the trap contains two coherent-
ly moving ions clouds.

Detailed discussions of single ion dynamics are in the
literature [4,18,20-24]. The equations of motion for a
single ion in the presence of a perturbation force F are
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given in the Appendix. A deeper understanding of space
charge effects is required in order to make further im-
provements in the FT-ICR method [8]. Due to the
Coulombic interaction between different m /Z ion clouds,
the cyclotron trajectories of the ions are perturbed from
circular orbits moving with the cyclotron frequency, re-
sulting in a sometimes dramatic variation from the
behavior predicted for a single ion. Phenomena arising
from the Coulombic interaction between different m /Z
ion clouds, same m /Z ions, or image charge induced on
the trap electrodes, are generically referred to as space
charge effects. Coulomb induced frequency shifts
[25-39], amplitude and phase [40] modulation, and
phase locking [41,42] are the most important space
charge effects in FT-ICR. The Coulomb interaction be-
tween two different m /Z ion clouds excited to some cy-
clotron radius (not necessarily the same radius) modifies
the radial electric field experienced by the ion clouds.
The cyclotron frequencies are shifted from their unper-
turbed values as a result of this space charge induced ra-
dial electric field. Since the distance between the ion
clouds changes with periodicity ~Aw, !, where Aw, is
the cyclotron frequency difference, the cyclotron phases
are modulated. The cyclotron radii are modulated as
well since the mutual E; X B drift between the two ion
clouds, where E_ is the space charge induced electric
field, causes a variation in radius with time. (The ion
clouds tend to avoid each other when they get close to-
gether.) However, if Aw, is small compared to the E, X B
drift frequency, the two ion clouds may phase lock,
whereby both clouds revolve around one another as well
as the trap center. During phase locking, a mass spec-
trum shows only a single peak, and not two peaks. The
primary goal of this work is to elucidate the behavior of
these three phenomena through an analysis of simple
physical models for space charge effects.

Section II discusses the relationship between trap
geometry, ion cloud shape, and ion confinement for an
unexcited ion cloud. Section III contains results of
theoretical investigations for the dynamics of two in-
teracting ion clouds, each possessing a coherent cyclotron
mode. Space charge effects are treated analytically by the
models of either two interacting point charges or two
infinitely long line charges. The more realistic models of
interacting charged spheres and infinitely long charged
cylinders are studied by numerical simulations. Included
here are the calculated cyclotron frequency shifts and
phase-locking thresholds. Implications of cyclotron fre-
quency shifts and phase locking to precision mass spec-
trometry are discussed. Section IV presents a few con-
cluding remarks.

II. THE UNEXCITED ION CLOUD

An important question concerns the appropriateness of
various simple models to describe space charge effects in
FT-ICR mass spectrometry. The best approach is prob-
ably to follow the dynamics of each ion, but is computa-
tionally intensive for a realistic number of ions and does
not lend itself to analytical solution. The simplest models
[25,26,31,42,43] which retain much of what is known in
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the FT-ICR excitation and detection process are those
which assume that each ion cloud is treated as a point
charge, line charge, or finite size distribution which in-
teracts only with ion clouds with a different m /Z.
Hence, the Coulomb interaction is included only between
different m /Z ion clouds and not between ions in the
same ion cloud. Inherent in this class of space charge
effect model is the assumption that the individual ion
clouds are stable during the ICR detection period. Ex-
perimental observations of coherent cyclotron motion
lasting longer than 10° cyclotron periods demonstrate ex-
traordinary stability for compact ion clouds with an ex-
cited cyclotron mode [32,44,45]. The traditional view
concerning space charge effects is that if too many ions
are confined Coulomb induced frequency shifts, which
are position dependent, lead to broadening of the ICR
signal [25,26]. However, E, X B drifts, where E_ is the
radial electric field with the origin at the ion cloud center
due to the Coulomb interaction for same m /Z ions
within an excited ion cloud, result in a rotation of the ion
cloud about the cloud’s own symmetry axis, assuming
that the ion cloud is a uniform charge density ellipsoid of
revolution [46—-53]. This internal rotation, which may
be thought of as an ion cloud spin, is independent of the
single ion magnetron motion, where the latter is due to
the radial ICR trap electric field. If the ion cloud is dis-
placed from the trap symmetry axis, the ion cloud now
has a nonzero magnetron radius and the ion cloud still
has the spin rotation about its own axis of symmetry.
This spin rotation has recently been predicted [52] to give
the postexcitation ion cloud enhanced cyclotron mode
stability against shear, such as may arise from small
differences in the cyclotron frequency at different posi-
tions in the ion cloud due to field inhomogeneities. Some-
what paradoxically, cloud stability is enhanced at lower
magnetic fields and higher charge density within the ion
cloud [52]. These dependencies can be understood by
noting that the ion cloud spin rotation rate is proportion-
al to E, and inversely proportional to B.

Radial confinement and z confinement set two basic
limits to the total number of ions which can be trapped in
an ICR trap [46]. It is also possible to deduce the most
appropriate simple physical model for the ion cloud
shape from these considerations. In this work we consid-
er two simplified models for the ion cloud distribution,
namely, uniform charge density spheres or infinitely long
cylinders. The z confinement limit is determined by the
condition that the space charge potential at » =0 (trap
center) is equal to the trapping potential well depth.
Consider first the model of an infinitely long uniform
charge density cylinder of radius p., charge per length
Ng /L, along the symmetry axis of an infinitely long
grounded cylindrical conductor of radius r,. Solving
Poisson’s equation (or Gauss’s law) gives for the electric
potential along the axis (r =0) [46]

T,
1+2In—
Pe

cyl — Nl... 3
®o 4oL ’ ®

where N is the total number of ions, each of charge
q=2Ze, in a cylinder L meters long. Similarly, if a uni-
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form density spherical charge distribution of radius p, is
at the center of a grounded conducting sphere of diame-
ter d, one obtains

4)

for the space charge potential at the center of the sphere
(r=0). The condition for z confinement is that the space
charge potential is less than the trapping potential well
depth. The trapping well depth at the center of a tetrago-
nal or cylindrical ICR trap with trapping potential ¥, on
the z electrodes and ground on all other electrodes is
equal to V,(1—D,), where D, is a geometric factor.
D,=1 for a cubic ICR trap and decreases monotonically
such that D,=0 for elongated traps with trap length-to-
diameter ratios greater than 2. The z confinement condi-
tion is then ®y<V,(1—D,). Combining with Egs. (3)
and (4) for a cylindrical charge distribution (in units of
numbers of ions per volt trapping) yields [46]

-1

N | - 4meol (1—Dy)
Vi q

,
1+2In—%

Pec

(5)

and for a spherical charge distribution yields

sphere 47, (1—D,) —1
N < € 0 3 __l_] ‘ 6

v q 2p. 1y

As an example, consider the case of a 5 cm long cubic
trap, p. =0.1 cm, and ¢ =e. For simplicity in the case of
cylindrical distributions, we assume that the charge dis-
tribution extends the whole trap length such that L =35
cm. For these parameters, one obtains N /¥, <3X10°
and N/V,<3X10° V71, for a cylindrical and spherical
charge distribution, respectively. A long cylindrical dis-
tribution generates a much smaller space charge potential
than a spherical charge distribution for equal radius
clouds with the total charge in the sphere equal to the to-
tal charge in the cylinder of length L >>p.. As individu-
al ions are added one by one into the trap along the z axis
and allowed to cool, the initial charge distribution can be
nearly spherical up to the point where a spherical charge
distribution is not allowed by z confinement limits. The
ion cloud either expands radially or elongates along the
ICR trap axis.

The radial dynamics of an ion cloud composed of a
species of one specific m /Z in thermal equilibrium is
complicated; for simplicity we discuss only the static
properties of an unexcited ion cloud located at the trap
center [46,47,50,53]. The ion cloud with axis of symme-
try collinear with the ICR trap axis and parallel to the
magnetic field has a thermal distribution which is identi-
cal to a Maxwell-Boltzmann distribution in the frame of
reference rotating with frequency o, (the ion cloud spin
rotation rate due to E X B drift) [46,47,50]. This spin ro-
tation is due to the ion cloud’s own space charge electric
field. Therefore, if the ion cloud is moved off the trap z
axis (e.g., given a nonzero magnetron radius), this ion
cloud still has spin ®, about its own symmetry axis with
the magnetron motion superimposed. In the limit that
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@, is small compared to the plasma frequency, the distri-
bution tends towards a long cylindrical ion cloud extend-
ing the entire length of the ICR trap [46,47,50].

The radial force balance between the Lorentz force,
arising from the space charge electric field, the magnetic
field, and the centrifugal force for a uniform density cy-
lindrical column of charge rotating about its symmetry
axis sets a maximum number density that can be achieved
known as the Brillouin limit ny [46,47,50]. For either an
infinitely long cylindrical charge distribution or a cold
ion cloud in thermal equilibrium located at the bottom of
a Penning trap potential [46-51]

0B’

np om (7)

While the maximum number density np is charge in-
dependent, the maximum charge density qnp is inversely
proportional to m/Z. As an example, the maximum
achievable number density for a cloud consisting of
m =1000 u ions in a 1 T magnet is 2.6 X10% cm 3, re-
gardless of the number of charges carried by each ion.
Assuming that the ion cloud is cylindrical with N ions of
charge g in a cylinder of L m long, combining Egs. (7)
and (5), then solving for the critical trapping voltage
V,=V,, yields

Bpiq

14212
32m n

Pe

V,(1—Dy)= : ®8)

For V, <V,, the Brillouin limit cannot be exceeded since
the trapping potential well depth is too shallow and the
ions may remain within the defined cylindrical volume.
For V, > V_, the Brillouin limit is exceeded if the trap is
allowed to be completely filled with ions, and the ion
cloud expands radially until the density is reduced. V,
predicted by Eq. (8) is actually an underestimate since
ions leak out the trap along the z axis due to thermal
motion. The maximum number of ions which can be
confined is likely smaller than predicted by Eq. (5). If p,
is chosen equal to the radius of the ionizing electron
beam or the radius of the beam of externally generated
ions entering the trap, then Eq. (8) gives an estimate of
the trapping potential ¥, or trapping well depth
V.(1—D,) above which the ion cloud must expand radi-
ally if the trap is filled to capacity with ions. It is well
recognized [8] that at high trapping potentials and high
m /Z the FT-ICR performance is degraded, particularly
when too many ions are confined. Equation (8) gives a
possible explanation. Since ¥V, is inversely proportional
to m /Z, it is easier to confine lower m /Z ions in a small
diameter column than high m /Z ions. As an example
consider the case of a cubic ICR trap (Dy=1), r,=2.5
cm, m/Z=100 u, and B=1 T. Also, the ions are as-
sumed to be generated along the z axis by electron impact
ionization within the trap by an electron beam of radius
p.=0.1 cm. Using Eq. (8), the critical well depth is 0.63
V and ¥V,=0.94 V. For V,>V, and the trap filled to
capacity with ions, the ion cloud has to expand such that
p.>0.1 cm. For a deep potential well such that V, >V,
and where ions are continually cooled towards the trap
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center, the ion cloud reaches the Brillouin limit before
spreading sufficiently to reach the z electrodes. Once the
Brillouin limit is reached and ions are continually intro-
duced into the trap, the plasma maintains a constant as-
pect ratio, expanding both radially and axially until it
contacts one of the electrodes [53].

Previous experimental work [30,31] demonstrates that
modeling space charge effects in FT-ICR experiments by
assuming cylindrical (or line charge) distributions pro-
vides a more realistic description in simulating practical
experimental conditions than assuming spherical (or
point charge) charge distributions. In one experiment
employing a slightly elongated cylindrical ICR trap, a
single m /Z ion cloud is excited to a coherent cyclotron
radius leaving all other m /Z ions at the trap center [30].
By measuring the cyclotron frequency shift as a function
of cyclotron radius, much better correlation is found be-
tween experiment and model calculations for a line
charge distribution, compared to a point distribution. In
a different approach, which includes image charge effects,
very good agreement is found between measured cyclo-
tron frequency shifts for two different m /Z ion clouds
excited to the same cyclotron radii with theoretical calcu-
lations based on assuming that each ion cloud is an
infinitely long line charge [31]. One therefore expects
that simplified theoretical models based on cylindrical
charge distributions are more appropriate to the FT-ICR
experiment than approaches based on using spherical (or
point charge) distributions. In addition, trap geometries
which are either elongated [54] along the z axis or have
grounded screens [55] in front of the z electrodes (end
caps) have sufficiently flat z confinement potentials such
that the ion cloud is approximately cylindrical in shape
with L >>p._.

Predicted space charge effects tend to be more pro-
nounced for spherical than for cylindrical ion clouds of
the same diameter and total charge. The phenomenon of
phase locking is much more sensitive to the shape (and
hence interaction potential) of the ion clouds than fre-
quency shifts. Phase locking occurs in spherically shaped
ion clouds with far fewer ions than cylindrically shaped
ion clouds of the same diameter. Quantitative agreement
between the present theory and previously published ex-
perimental data is obtained only for a cylindrical charge
distribution with a nonzero diameter.

III. CYCLOTRON DYNAMICS

Simple physical models are employed to investigate the
dominant behavior associated with space charge effects in
FT-ICR mass spectrometry. While these models are too
complex to yield exact analytical solutions, approximate
results are still obtainable. For a more realistic model,
the finite size of ion clouds is included in most of the nu-
merical simulations. For simplicity, the analysis is re-
stricted to two-dimensional motion in the x-y plane.

We shall derive the cyclotron equations of motion for
line and point charge models, beginning first with those
equations for the line charge model. As variables (see
Fig. 1), we choose the cyclotron radii (R; and R,), and
the cyclotron phases (B, and f,), where the subscripts

1 r 2
cloud 2 clou
...................
: 1 ....... , 1
......
0, 1
2\_/

FIG. 1. Geometry for two ion clouds in the z=0 plane. Ion
cloud j (j=1,2) has cyclotron radius and phase equal to R; and
¢; (where ¢;=w, ;t+p;), respectively. The magnetron radii
equal zero. In the numerical simulations the magnetron motion
is included as well as the cyclotron motion. Each ion cloud has
a radius equal to p,.

denote ion clouds 1 and 2, respectively. Magnetron
motion is not included in the analytical equations, but is
included explicitly in the numerical simulations. The
electric field for an infinitely long, uniform density
cylinder of radius p, a distance r from the center is

*qz r, r<p. (9a)
2megp.L
E= N 1
q
’ > > 9b
2megl | r F=Pe (9b)

where g is the charge (g =Ze) of one ion and N is the to-
tal number of ions contained in a segment of the cylinder
a length L m long. For a line charge, p, —0; then Eq.
(9b) is the radial electric field for all values of r. Using
Egs. (9b) and (A3), the amplitude-phase equations of
motion describing the time dependence of the cyclotron
radii and phases of two Coulombically interacting line
charges is (neglecting image charge effects and magnetron
motion)

_ | Ta2NaR, |
= |7 [sinly),
2megBLr1,
(10a)
. —q;NR .
R,= ——1—1—21- sin(y) ,
2mwegBLr 1,
. —q,N. R
Bi= —2—22 1———Zcos(7) ,
2megBLr1, R,
N N (10b)
: 414V, 1
=|—— | |l——=cos(y) |,
B, 2me,BLr2, R, %7 ]

where R s B i and ¢q jN /L are the cyclotron radius, cyclo-
tron phase, and line charge density of the jth line charge
(j=1,2), respectively. Also ¥ and r, are the instantane-
ous angular separation and distance between the two line
charges, given by
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Y =(0,—0,)t +B
Fh=RI+R]

(11)
(12)

__BZ ’
—2R1RZCOS(7/) .

In Eq. (10) the approximation w,—w_=~w, has been
made, which is accurate provided w,>w,>wo_.
Neglecting magnetron motion (alternatively called
diocotron motion [46,47,50]) is valid under most condi-
tions provided that the initial magnetron radius is small
compared to the cyclotron radius and that the frequen-
cies @, and @, do not satisfy the special commensura-
bility condition . ,/0 ;=%+,%,...,n/(n+1),.
(where n is an integer) [56]. This latter case is unimpor-
tant for nearly all parameters (see below).

For completeness, the cyclotron equations of motion
for the point charge model are now presented. The elec-
tric field for a uniform density sphere of radius p, a dis-
tance r from the sphere’s center is

N
et | P 1
= vg )1
EZ; 7, r>p., (130b)

where N is the total number of ions of charge g coulombs
inside the uniformly charged sphere of radius p.. The
electric field inside the charge distribution is proportional
to r, which is the same dependence as for the cylindrical
charge distribution. In general, a uniform charge density
ellipsoid of revolution has a radial electric field which is
proportional to » [34,47,50]. However, outside the charge
distribution the electric field has a radial dependence that
varies with ion cloud geometry (e.g., » ! and » ~2 for cy-
lindrical or spherical clouds). The cyclotron equations of
motion for the point charge model (p, =0) in amplitude-
phase representation are

+4q,N,R, | .
————— [sin(y),
47T€0Br12
(14a)
—q,N\R; |
—_— sin(y) ,
41eBri,
3 ;q_zN_z I—R—COS( )
U | 4meBrd, R, 4
(14b)
B' = ;qﬂ I—R—cos( )
2 4meyBri, R, 4

where all variables are defined as for the line charge mod-
el. While we have neglected magnetron motion and used
the approximation o, —®_=~w, in deriving Egs. (10)
and (14), these assumptions are not made in the numeri-
cal simulations.

The most important phenomena predicted by the sim-
ple physical models employed here are cyclotron frequen-
cy shifts, amplitude and phase modulations, and phase
locking. The Coulomb interaction between two different
m /Z ion clouds perturbs the radial electric field experi-
enced by the ion clouds, resulting in a shift from the un-
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perturbed (quadrupolar) cyclotron frequency [25,26].
Since the distance between the ion cloud, varies with a
periodicity ~1/Aw,, the cyclotron phases and radii are
both modulated. The radii are modulated due to their
mutual E X B drifts, where E is the Coulomb electric
field. The ion clouds tend to av01d each other when they
get closer together, as one would expect. However, if
Aw, is small compared to the E X B drift frequency, the
two clouds may phase lock, whereby both clouds revolve
around one another as well as the trap center. Upon
phase locking, a mass spectrum shows only a single peak,
not two peaks. All of these behaviors are contained in
the cyclotron equations of motion, Egs. (10) and (14).

A. Cyclotron frequency shifts

Frequency shifts for the line charge and point charge
models are now derived from Egs. (10b) and (14b) by the
method of averaging [23]. Averaging is applicable pro-
vided the cyclotron frequencies are sufficiently different
such that Aw,7>>2m, where 7 is the observation time. If
Aw, 7>>2m, then y is fast varying with respect to the
time variation of B; and B,. To demonstrate how fre-
quency shifts are obtained one should recall that the x
and y positions of the cyclotron position for the jth ion
are

x;(t)=R;cos(w.t+B;)
y;(t)=—Rsin(w.t +B;) .

(15)

If the Coulomb interaction is neglected, R ; and Bj are
constants of motion. However, due to Coulomb interac-
tions from all other m /Z ion clouds, R g and B ; are time
dependent. With the method of averaging one replaces
the right-hand sides of Eqs. (10) and (14) by their average
over the individual phases. This is equivalent to averag-
ing over ¥ from O to 27. We define the average of any
function Fby {F),
1 2T
(Fy=—_—["Fd (16)
In particular, the cyclotron frequency shift dw, is given
by 8w,={B). Applying Eq. (16) to Eq. (10), one finds
that (R i ) =0 (implying that the cyclotron radii are ap-
proximate constants of motion) and that in general
(B;)#0. Considering first the line charge model [Eq.
(10b)] we find that

—g,N
P Z;leez’ R,<R, (17a)
TTE, 1
sw,= {0, R,>R, (17b)
—g,N
e Z;L;Z, R,=R, . (17¢)
TTE 1

8w., is obtained from Eq. (17) by interchanging sub-
scripts 1 and 2. The line charge model predicts that a
line charge which has a smaller cyclotron radius than
another line charge should experience no cyclotron fre-
quency shift from the larger cyclotron radius line charge.
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This result may be understood by noting that the fre-
quency shifts arise from the radial component of the
Coulomb electric field. As shown in the Appendix the
cyclotron radius and phase equations can be given as (as-
suming 0, —o_ =~a,)

. —F
R,= de ,

18
o (18)
B+—R+qB .

F4 and F, are the azimuthal and radial components of
the Coulomb force, respectively. By averaging over 7,
the original problem involving a time-dependent
Coulomb force is replaced by a new problem, namely,
two interacting charged cylindrical shells. Through
averaging, the Coulomb force is smeared over an
infinitely long cylindrical shell with a radius equal to the
cyclotron radius. For this situation, Gauss’s law shows
that the inner cylinder experiences no force from the
outer cylinder, while the outer cylinder experiences the
same radial force from the inner line charge as if the line
charge were located at the origin. The frequency shifts
are independent of the position of the perturbing line
charges. Furthermore, symmetry shows that F,=0 and
that the Coulomb force is purely radial for the problem
of concentric infinitely long charged cylindrical shells.

When R, =R,, the cyclotron frequencies of both line
charges are shifted to lower frequencies for positively
charged ions. This equation has previously been derived
by Gorshkov, Marshall, and Nikolaev [31] who con-
sidered just the special case where R =R,. While image
charges are neglected in the present analysis, the high
symmetry of the line charge model allows a simple solu-
tion for the special case of a grounded infinitely long
cylinder. Gorshkov, Marshall, and Nikolaev [31] have
derived the image charge induced cyclotron frequency
shift for two infinitely long line charges with equal cyclo-
tron radius in a grounded cylinder. This result is also ap-
plicable to the case of arbitrary cyclotron radius which
follows from Eq. (17b).

Applying the averaging method [23] to the simple
point charge model yields (R j)=0, which shows that
the cyclotron radii are approximate constants of motion.
The integral of the right-hand sides of Eq. (14) over y
while keeping R, and R, constant does not have a simple
solution, and is singular when the two cyclotron radii are
equal. This problem is resolved either by allowing the cy-
clotron radii to vary with time (since the point charges
tend to avoid each other due to their Coulomb interac-
tion) or by replacing the point charge model with a spher-
ical charge model [26]. In this latter case, the Coulomb
force is zero when the ion clouds completely overlap.
Finite size effects are included in the numerical simula-
tions. However, accurate analytical results for frequency
shifts are still possible in the form of power series for the
special cases when R; >R, or R; <R, by expanding r3,
in the denominator and integrating term by term. By
averaging, the cyclotron frequency shift for the case
R, >R, is

4371
2 4
—q,N, 3 | R, 45 | R,
ooy ——— |1+ |5 — | =
4me,BR 4 | R, 64 | R,
6
89 | R
128 |R, (19a)
Similarly, the case R; <R, yields
4
50 o TN [1 0 [Ri]T 75 [Ry
' 4re,BR3 |2 ' 16 |R, 128 | R,
6
1225 | R,y
— = E 19b
2048 | R, ] (190)

Averaging predicts that both positive and negative fre-
quency shifts are possible for the simple point charge
model depending upon whether R, is either greater or
smaller than R,. Contrary to previous works
[25,26,30,32—-34,37] which predict only negative shifts we
find that both positive and negative frequency shifts are
possible for the point charge model. These predictions
are verified by numerical simulations (see below). The
frequency shifts for both line charge and point charge
models are m /Z independent, proportional to the total
charge in the other ion cloud, and inversely proportional
to the magnetic field strength. The analytical frequency
shifts are now compared with exact frequency shifts cal-
culated from numerical trajectory calculations.

Numerically, we describe the position of each m /Z ion
cloud by

x;(t)=R;cos(w;t+B;)t+x,,; , 20)
yj(t)=—R;sin(w;t+B;)+y,,; ,

where R j» Bjs Xmjs and y,, j are the cyclotron radius, cy-
clotron phase, magnetron x position, and magnetron y
position of the jth ion cloud, respectively. These vari-
ables are directly obtained by numerical integration of
the amplitude-phase equations of motion [Eq. (A3)] for
the cyclotron dynamics and the magnetron position equa-
tions of motion [Eq. (A8)] for the magnetron dynamics.
The entire system of simultaneous first-order differential
equations (4 X number of ion clouds) is integrated includ-
ing explicitly the Coulomb interaction.

The numerical integration method used is the first-
order Cromer-Euler method [57,58] (also called the last
point approximation) which is a simple and absolutely
stable algorithm. A constant time-step size [typically
~(1074-1073)Aw_; ! with even smaller time steps for
phase-locked ion clouds] is employed, whose adequacy is
checked against identical simulations with smaller time
steps. Since the differential equations integrate directly
the cyclotron radii, cyclotron phases, and magnetron po-
sitions, all of which vary slowly in comparison to o ;t,
relatively larger time steps can be used in the present
work compared to schemes which directly integrate the
equations of motion in Cartesian coordinates in the labo-
ratory frame of reference. We emphasize that any analyt-
ical theory must be compared to the exact numerical re-
sults.
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In most of the numerical simulations, the ion clouds
are represented by uniform density infinitely long cylin-
drical ion clouds or spherical ion clouds. As described
earlier, the finite diameter of the spheres or cylinders is
taken into account by scaling the point charge model or
line charge model interaction force by (r,/2p.)® or
(ri2/2p. )% respectively, when the ion clouds overlap.
For separated (nonoverlapping) ion clouds, the usual
point charge or line charge forces are used without scal-
ing. This form of scaling for overlapping ion clouds as-
sures that the interaction force is zero for completely
overlapped ion clouds and increases linearly with separa-
tion distance up to the point (r;, =2p_.) where the ion
clouds are just touching. This form of interaction for
overlapping ion clouds is most appropriate for uniform
density clouds with circular cross section. For this class
of ion clouds, symmetry arguments demonstrate that the
interaction force is zero for complete overlap and in-
creases linearly with separation for small separation dis-
tances [59]. The numerical calculations of Chen and
Comisarow [26] for the interaction force between two
charged disks and Hendrickson, Beu, and Laude [40] for
their split charge model show that the force is rigorously
zero for complete overlap and also that the linear force
approximation for overlapping distributions is reason-
able.

In all of the numerical calculations, except where not-
ed, we use Ny=N,, B=1T, L=5 cm, q;=¢q,=e, and
p.=0.1 cm. For initial conditions the initial cyclotron
radii and magnetron radii for both ion clouds are set
equal to 1.0 cm and zero, respectively.

Figure 2 presents results of numerical simulations for
the cylindrical charge model. In these simulations,
m ;=70 u and m, =100 u and the number of ions in each
cylinder is varied from 10* to 10°. Only the results for 3,
and R, are plotted since the magnetron radii did not vary
significantly from zero. In addition, 3, looks very similar
to ;. While R, (?) oscillates slightly above the initial ra-
dius value, R,(¢) oscillates below. Since the magnetron
radius does not change much from its initial value (zero),
we expect the numerical simulations to agree very well
with predictions based on Eq. (10). First of all, the cyclo-
tron radii Egs. (10a) or (14a) can be combined and then
integrated to yield

q:N,R?+q,N,R3=C . 21)

C is a constant of motion proportional to the canonical
angular momentum about the z axis. Since ¢;N;=g¢,N,,
by Eq. (21), R2+R?% is constant. Hence, R,(z) and R,(t)
are not independent. As R, increases, R, decreases.
Most importantly, Fig. 2(b) shows that R, and R, do not
deviate much from their initial values, less than 0.5% for
10% ions. This agrees well with the analytical prediction
that the cyclotron radii are approximate constants of
motion for incommensurate frequencies and
Aw,7=62>>21, for the conditions used.

The linear variation of 3; with time has a simple physi-
cal interpretation. As can be seen from Eq. (20), a fre-
quency shift away from o ; corresponds to a linear vari-
ation of B; with time [23]. The cyclotron frequency shift
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is equal to the slope of a linear variation in B; as a func-
tion of time. This numerical method has been used suc-
cessfully in studies concerning the effects of nonquadru-
polar trapping potentials and inhomogeneous magnetic
fields on single ion motion [60,61]. We shall use this
method for calculating frequency shifts, numerically.
From Fig. 2(a) the cyclotron frequency shift 8w, is nega-
tive.

Figure 3 presents plots of frequency shifts predicted
from numerical simulations for the spherical and cylin-
drical charge models (solid lines) and from the analytical
results for the point [Eq. (19)] and line charge [Eq. (17)]
models (dashed), respectively. In these calculations,
N,=N,=5X10* ions, R,(t=0)=1.0 cm, while
R,(t=0) is varied from 0.1 to 1.0 cm. All other parame-
ters are the same as used in Fig. 2. The analytical and
numerical results are in very good agreement for
R,,<0.8 cm. When 0.8<R,;<1.2 cm, the ion clouds
partially overlap since p,=0.1 cm. The analytical and
numerical results differ for overlapping ion clouds since
the analytical results are derived for p, =0, i.e., the point
charge and line charge models. In general, very good
agreement is found for the case of nonoverlapping ion
clouds. In particular, the numerical simulations agree

@ o.01

N,=N, = 10*
0 1 2

108
-0.01 f 0

B, (rad)

6
003 10

-0.04

-0.05 - >
0 0.05 0.10 0.15

Time (ms)

(®) 1.005
10°
1.004 }
1.003

1.002

R, (cm)

1.001

14—
105/
10*

0.999 |

0.998 . -
0 .05 .10 .15

Time (ms)

FIG. 2. Numerical simulations of two cylindrical ion clouds
at three different ion numbers. (a) B, versus time. [, (not
shown) is nearly identical to ;. (b) R, and R, are related by
Eq. (21). (Conditions include m ;=70 u, m, =100 u, N;=N,,
B=1 T, L=5 cm, p,=0.1 cm, gq,=¢g,=e, V,=0 V,
R1p=Ry=1 cm, B1y=/=0 rad, and zero initial magnetron
radii.)
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with the prediction that a spherical ion cloud with a cy-
clotron radius smaller than a second spherical ion cloud
experiences a positive frequency shift from the second ion
cloud. In Fig. 3(b) the solid square is the analytical fre-
quency shift predicted from Eq. (17c¢) for the special case
R, =R, and agrees surprisingly well with the numerical
simulations. When R ;=R ,,, the numerical simulations
for the cylindrical charge and spherical charge models
predict negative frequency shifts for both ion clouds.

B. Implications for FT-ICR mass calibration

One of the earliest theories for explaining space charge
induced frequency shifts in ICR traps is the model of
Jefferies, Barlow, and Dunn (JBD) [34]. In that work the
known electric field “inside” a uniformly charged ellip-
soid is used to calculate the shifted cyclotron frequency.
The radial electric field inside a uniformly charged ellip-
soid is proportional to r, the normal distance from the
cloud center. The JBD model is valid for the conditions
for which it was originally derived but is not completely
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FIG. 3. Analytical (broken lines) and numerical (solid lines)
frequency shifts. (a) Analytical point charge model, Eq. (19),
frequency shifts compared to numerical simulations using
spherical ion clouds (p.=0.1 cm). (b) Analytical line charge
model, Eq. (17), frequency shifts compared to numerical simula-
tions using cylindrical ion clouds (p,=0.1 cm, L =5 cm). (The
initial cyclotron radius R,,=1 cm, while R,, is varied.
N,=N,=50X10? ions. All other conditions are the same as
given in Fig. 2.)
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applicable to typical FT-ICR conditions. In most FT-
ICR experiments the ion clouds are not always overlap-
ping and the radial electric field “‘outside” the ellipsoid is
of particular interest. The radial dependence of the elec-
tric field outside the ion cloud is different from that in-
side. For example, uniformly charged spheres and
infinitely long cylinders have radial fields proportional to
r~2 and r |, respectively, outside of the distributions,
compared to simply r inside. The different forms of the
interaction outside compared to inside lead to qualitative-
ly different results for the frequency shifts. Earlier work
[25] has discussed the inadequacy of the JBD model to
properly explain the FT-ICR experiment. They point out
that while this model is appropriate for traditional ICR
experiments where a single m /Z is excited subjected to
the Coulomb interaction of all other m /Z ions remaining
at the trap center, in FT-ICR all m /Z ions are simultane-
ously excited to ideally the same cyclotron radius whose
cyclotron frequencies are detected subsequent to excita-
tion. The radial dependence of the Coulomb induced
electric field used in the JBD model is also inappropriate
to the FT-ICR experiment. The resonance frequencies at
which the ions are excited within the initial unexcited
charge distribution are correctly explained within the
JBD model; however, it incorrectly describes the detected
cyclotron frequencies of spatially separated ion clouds
after the excitation event.

The JBD model [34] has become a standard for devel-
oping FT-ICR mass calibration laws which include space
charge effects. In fact, Ledford, Rempel, and Gross [19]
have shown that this approach works quite well, account-
ing for approximately 70% of the space charge effects in
their experiments. However, we have presented argu-
ments questioning the applicability of the JBD model.
The standard FT-ICR mass calibration law is obtained by
solving Eq. (2) for m /Z, leading to [19]

m_% 2 22)

zZ o, o
where ¢, and c, are calibration constants which are
empirically determined by fitting Eq. (22) to known
m/2Z’s and experimentally measured o, values.
Theoretically, ¢, is the magnetic field strength while c,
depends linearly on the trapping potential V,. This form
of calibration is unaltered if the JBD model [34] is used
to describe space charge effects since for this case the ra-
dial dependence of the Coulomb electric field is identical
to the radial dependence of the trapping electric field.
With space charge effects included by use of the JBD
model, the mass calibration law is independent of cyclo-
tron radius.

We now derive a different mass calibration equation
based on the frequency shifts appropriate for FT-ICR.
From Egs. (17) and (19) the Coulomb induced frequency
shifts depend on cyclotron radius (the JBD model shifts
do not) and are m /Z independent. For this case, one can
then show that the calibration is

m ¢ )
—= + , (23)
Z (04— 8w.,) (0,—bw,)
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where @, is the measured cyclotron frequency, and c;,
¢, and 8w, are calibration constants. In particular, 8w,
is the cyclotron radius dependent, m /Z independent
Coulomb induced frequency shift. Since 8w, <<w,, we
expanczi the denominator in Eq. (23), retaining terms up to
O(wi”),

(24)

where ¢5 =c, +c¢,8w, is a calibration constant. Equation
(24) is in the same form as the standard mass calibration.
Just because a mass calibration relation based on the JBD
model is in good agreement with experiment at a fixed cy-
clotron radius does not prove that this model is the
correct description of space charge effects in FT-ICR.
The work of Ledford, Rempel, and Gross [19] was done
at a fixed cyclotron radius in which case Egs. (22) and
(24) predict nearly identical results. At a fixed cyclotron
radius, the mass calibration is basically independent of
the space charge model. Only at varying cyclotron radii
do model differences become significant.

C. Commensurate frequencies
When a certain commensurability condition defined by

(0+2= n
n+1

(n=1,2,...) (25)

D4

is satisfied between the two ion clouds, the possibility of
internal resonance exists, which causes the ion cloud’s
mode amplitudes and phases to modulate on a long time
scale. Peurrung and Kouzes [56] were the first to recog-
nize this class of internal resonance by numerical simula-
tions on spherical ion clouds. They assumed that v, =0
in which case w ,/w=w, /w,. It turns out that,
since w,/w 1 Fw,,/w,, exactly in actual experiments,
this class of resonance is probably not very important in
most experiments. Under most experimental conditions
these resonances are likely avoided.

The commensurability condition Eq. (25) can be under-
stood by considering that two ion clouds with the same
cyclotron radius and zero magnetron radius pass each
other at the same position in the x-y plane only when Eq.
(25) is satisfied. Thus in this simplified model the ion
clouds, through their Coulombic interaction, introduce a
periodic driving force on a long time scale. We find that
magnetron motion is critical for this phenomenon since
numerical integration of either Egs. (10) or (14), which
neglect magnetron motion, does not show any commens-
urate resonance effects.

Figure 4 displays results of numerical simulations (in-
cluding magnetron motion) for the strongest resonance
(n=1) using cylindrical ion clouds with m,/Z=50 u
and m,/Z=100 u. The conditions include B=1 T,
N,=N,=50X10% and V,=0. The ion clouds initially
have equal cyclotron radii (1 cm) and are 7 out of phase.
Figure 4(a) shows the time dependence of the cyclotron
and magnetron radii while Fig. 4(b) plots the cyclotron
phases. This resonance, as with all others satisfying Eq.
(25), shows a strong coupling between cyclotron and mag-
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netron modes over very long time scales. The modula-
tion period is approximately 11X 10° cyclotron periods of
the slower ion cloud. The cyclotron phases, while show-
ing slight modulation, still produce negative and approxi-
mately equal frequency shifts on average over the obser-
vation time.

Figure 5 plots maximum relative variations in R, as a
function of w.,,/w,,=m/m, taken from numerical cal-
culations of 12X 10° different values of m,/m, ranging
from 0.4 to almost 1. The lowest order (smallest n) reso-
nances are the strongest, resulting in significant varia-
tions in the cyclotron radius. The resonance peaks in
Fig. 5 do not accurately represent the true peak heights
due to the extreme narrowness of these resonances and
the discrete numerical sampling.

The baseline rise of AR, shown in Fig. 5(b), is due to
the resonance Aw,=0. This additional resonance, which
is contained in Egs. (10) and (14), is not related to either
magnetron motion or the commensurability condition
Eq. (25). When Aw, =0, then Aw,7=0 and averaging the
cyclotron equations of motion over ¥ is not allowed. The
Aw,=0 resonance is responsible for most of the modula-

(@ 15

AR A

'g ‘.‘:: ) s
A 1 b . Lo ..
:‘E W
3 f
& 05t
e Tmis Tm2

0 \ . \ .

0 5000 10000 15000 20000 25000

W t/(21)

(b) 4

Sl —— B,
~ 2b e
= I
s v T
o~ 1 [
[N
&

0 By

b

2 . . . .
0 5000 10000 15000 20000 25000
Wet/(2m)

FIG. 4. Numerical simulations of two cylindrical ion clouds
at the 1:2 (n=1) resonance. (a) The time evolution of the cyclo-
tron radii R; and magnetron radii 7,; of the two ion clouds.
The total canonical angular momentum which is proportional
to 3,q;N;(r;;—R}) is conserved. (b) The time dependence of
the cyclotron phases B;. (N;=N,=50X10%, m;=50 u,
m,;=100 u, B1r=0, Byp=m R;;=R,=1 cm, 7 (t=0)=0,
B=1T,L=5cm,q,=¢,=e,p.,=0.1cm,and V,=0V.)



52 CYCLOTRON MOTION OF TWO COULOMBICALLY ...

tion effects [40] and phase-locking [41,42] phenomena ob-
served in FT-ICR experiments.

In order to ascertain the possible importance of reso-
nances satisfying Egs. (25) we have done numerical simu-
lations which show the dependence of these resonances
on trapping voltage, magnetic field strength and reso-
nance order n. Figure 5(b) demonstrates that higher
values of n are not important since their effect on R, is
small and that the Aw.=O0 (phase-locking) resonance
dominates the dynamics for m,;/m,>0.99. Therefore
we concentrate on the importance of low order reso-
nances. Maximum relative changes in R, for ion motion
in a cubic Penning trap for three different values of V, are
shown in Fig. 6. At V,=0 V, the resonance is centered
near m,;/m,=0.5, while a slight increase in V, to 0.5 V
completely moves the resonance to a higher value of
m,;/m,. This is possibly experimentally significant.
Since increasingly important FT-ICR experiments in-
volve isotopic contributions or multiply charged species,
the condition @,,/®, =n/(n~+1) is always satisfied for
some particular value of n. In particular, if the two
species are singly and doubly charged ions then the dom-
inant n» =1 resonance exists. However, these resonances
are usually extremely narrow and the true commensura-
bility Eq. (25) is normally not exactly satisfied. In addi-
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FIG. 5. Numerical simulations of the dependence of the
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tron frequency ratio. Conditions are m,=100 u,
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FIG. 6. Dependence of the position of the primary 1:2 reso-
nance on trapping voltage. Three different trapping voltages (0,
0.25, and 0.5 V) are shown and the ICR trap is assumed to be
cubic geometry. Note that there is close to a 100% variation in
cyclotron radius at the resonance maximum. All other parame-
ters are the same as used in Fig. 4.

tion the higher order resonances (high n values) are not
very significant for the conditions shown in Fig. 5. Final-
ly, Fig. 7 presents maximum relative variations in R, as
a function of magnetic field strength B for two different
resonances (n=1 and 9). As expected, the n =1 reso-
nance is stronger than the n =9 resonance. The effect of
the magnetic field is to broaden the resonance and in-
crease its magnitude at lower field strength. An estimate
of the parameter dependencies on the resonance based on
Eq. (10a) shows that the resonance strength is propor-
tional to N /(BL). The modulation amplitude is propor-
tional to the line charge density and inversely proportion-
al to B. Even though ¥, =0 in the simulations for Fig. 7,
the peaks are not exactly centered at the resonance posi-
tions m;/m,=0.5 and 0.9. The resonance peaks are
centered at higher m, /m, positions with larger shifts for
smaller magnetic field values. These shifts are due to the
space charge induced frequency shifts which are negative
and whose magnitudes are inversely proportional to B. It
is likely that for the simple model involving two cylindri-
cal ion clouds the class of resonances Eq. (25) coupling
cyclotron and magnetron modes is not too important for
FT-ICR. Only the low order resonances (n <10) show
significant effects in the numerical simulations. However,
in experiments employing high field magnets these reso-
nances are probably avoided due to their narrow widths
and sensitive positional dependences on experimental pa-
rameters such as trapping potential. Future experiments
are required to determine their actual importance to mass
spectrometry.

D. Aw, modulation and phase-locked motion

The cyclotron radii and phases are modulated due to
the effective time dependence of the interaction each ion
cloud experiences as they pass one another during their
cyclotron trajectories. The frequency of the perturbing
force is evidently ~Aw,, the difference in cyclotron fre-
quency for the two ion clouds. Amplitude modulation
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arising from Aw, modulation is clearly visible in Fig. 5(b)
as the roughly exponential increase in cyclotron radius
variation with increasing w,,/w,;. When (dy/dt)=0
corresponding to Aw,.~0, a resonance condition is
satisfied, which we call the phase-locking resonance. In
order to understand the origin of Aw, modulation in the
two ion cloud model recall that each cloud experiences a
Coulomb force from the other cloud resulting in an E X B
drift which is in addition to the cyclotron motion around
the ICR trap center.

Earlier work has shown [40] that frequency (or phase)
modulation results in spectral sidebands with spacing at
the cyclotron frequency difference; however, in that study
the cyclotron radii were held constant. A quantitative
description of Aw, modulation requires including the
time variation of the cyclotron radii as well as the phases
in the analysis. In any case the E X B drift, where E is
due to the interaction between ion clouds, is the origin of
the phase-locking phenomenon. It is impossible to pre-
dict phase locking without consideration of the time
dependence of the cyclotron radii.

Phase locking between two ion clouds in a FT-ICR
mass spectrometer has recently been observed [41,42]. In
addition, Naito and Inoue [42] have developed a theory
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FIG. 7. Dependence of the maximum variation in R, as a
function of magnetic field at the (a) 1:2 (n=1) resonance; (b)
9:10 (n =9) resonance. The magnetic field values of B=0.5, 1,
2, and 3 T are shown. m, =100 u while m, is varied. All other
conditions are the same as given in Fig. 4.
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for cyclotron phase locking based on the point charge
model. We shall demonstrate below that, contrary to the
theory of Naito and Inoue, the phase-locking threshold is
strongly dependent on the initial separation distance of
the two ion clouds. In addition, we show that any theory
which does not include the finite diameter of the ion
cloud is in error from a quantitative point of view. The
finite size of the ion cloud reduces the onset of phase-
locking compared to the simple point charge model. Our
predictions are supported by comparison of exact numer-
ical calculations with previously published experimental
data.

Cyclotron phase locking is just one example of a gen-
eral and pervasive phenomenon among coupled nonlinear
oscillators. Phase locking (alternatively called mode
locking, frequency locking, frequency entrainment, or
simply synchronization) occurs in electrical, mechanical,
acoustical, and control systems [62,63]. The principal
system requirements [62,63] appear to be two nonlinearly
coupled oscillators whose natural frequencies are close to
a small integer fraction, such as 1:1. The earliest
scientific observation [63,64] of phase locking was by Hu-
ygens in 1673, who described how two pendulum clocks
with slightly different natural frequencies hanging back
to back on the same thin wall would eventually synchron-
ize their motions. Finally, phase locking is observed in rf
Paul traps as well as in Penning traps [59,65]. _ _

Cyclotron phase locking arises when the E XB drift
dynamics due to the Coulomb interaction between ion
clouds dominates the cyclotron dynamics. In particular,
if the two ion clouds rotate about each other in a time
which is shorter than the time required for the two
clouds to traverse the same distance due to just their cy-
clotron motion, the ion clouds may phase lock [56]. Fig-
ure 8 shows cyclotron radii, 3, ¥ and separation distance
for two cylindrical ion clouds with N, =N,, m;=99.99
u, m,=100.00 u, B=1 T, p.,=0.1 cm, and
Aw,=(27)15.358 Hz, at three different numbers of ions.

The ion clouds are assumed initially completely over-
lapping (y,=0) which follows from experimental con-
siderations. If two closely spaced m /Z ion clouds are ex-
cited to the same cyclotron radius in a time much shorter
than 27/Aw,. then immediately after excitation the ion
clouds have the same initial cyclotron phases; thus y,=0.
These considerations disregard Coulomb interactions.
The phase locking is actually more prominent at smaller
cyclotron radii since the ion clouds experience a greater
time-averaged interaction force in this case. If the ion
clouds are phase locked after excitation, the clouds were
likely phase locked before excitation. Therefore ¥(0)=0
immediately after the excitation event.

The plots for R; show significant modulation. In going
from N, =N, =10X10% ions to 25X 10 ions the modula-
tion amplitude increases significantly. In going from
25X 10° to 30X 103 ions the modulation amplitude de-
creases while the frequency of the modulation increases.
The ion clouds are phase locked when there are
N,;=N,=30X10% ions. This is most evident in Fig. 8(d)
where the ion cloud separation distance r;, remains a
small value. If Coulomb interactions are neglected then 2
cm>r;, >0. In Fig. 8(b) one observes that the frequency
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shift is negative for both ion clouds when
N,=N,=10X10>. However, at 25X 10° ions, ion clouds
2 and 1 experience a positive and negative frequency
shift, respectively, indicating that the cyclotron frequen-
cy difference between the two clouds is beginning to de-
crease. At phase locking (N;=N,=30X10% the fre-
quency shifts are even larger in magnitude. When phase
locking occurs, we have the condition that the average
value of y is zero. Using Eq. (11) and the relation be-
tween frequency shifts and B; (numerically, frequency
shifts are the slope of a linear variation in 8 ; as a function
of time), the phase-lock condition is

<’}'/>=(0+1_01+2+<Bl)“(ﬁ.2>=0, (26)

where { ) denotes the time average over a long observa-
tion period. Figure 8(c) plots y(z) demonstrating that the
phase-lock condition (y)=0 is satisfied for
N,=N,=30X10%ions. In ordinary motion when the ion
clouds are not phase locked, the magnitude of the phase
v(¢) increases indefinitely. For phase-locked ion clouds,
v (¢) oscillates about y =0.

Since two ion clouds which are at or near the phase-
locking threshold are initially overlapping (y,=0), quan-
titative agreement with experiment requires a theory
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which includes the nonzero radius of experimentally real-
istic ion clouds. While the finite radius of actual ion
clouds is easily included in computer simulations, it is
much more difficult to do so in deriving an analytical
theory for phase locking. On the other hand, we shall
demonstrate that it is possible to derive simple analytical
phase-locking thresholds for the point and line charge
models. The phase-locking thresholds for the simple
point and line charge models are strongly dependent
upon the initial phase separation y,. When the finite size
ion clouds are initially overlapped, the point and line
charge model results are inappropriate for predicting the
phase-locking threshold for finite radius ion clouds.
However, two ion clouds which are not partially over-
lapped initially and are at or near phase locking tend to
avoid each other. For this situation, the point and line
charge model results should be close to the phase-locking
thresholds for realistic clouds. The experimentally
relevant case when the clouds are initially overlapping
(yo<<1) is treated by assuming that the point or line
charge model results are approximately correct for actual
ion clouds assuming that the initial separation distance s
between point or line charges is replaced by an effective
separation distance s,y which is proportional to the ion
cloud radius. The proportionality constant between s and

(c) 20
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> 5F

0
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FIG. 8. Numerical simulations using cylindrical ion clouds (p,=0.1 cm and L =5 cm) before and after the phase-locking thresh-
old. Three different ion populations are shown: N;=N,=10X10% 25X 10% and 30X 10%. (a) R, and R, as a function of time. R,
and R, oscillate above and below, respectively, their initial values. (b) Cyclotron phase B;(z). (c) Cyclotron phase separation
Y(t)=(w4+w4)t+B1—B,. (d) r,(8), the separation distance between the ion cloud centers. Conditions include B=1 T,
m;=99.99u, m,=100u, g, =¢g,=e, V,=0V, R \;,=R,,=1cm, B1,=B, =0 rad.



4378

s is determined by comparing analytical point or line
charge model phase-locking thresholds with numerical
simulations using spherical or cylindrical ion clouds.
Equations (10) and (14) can be considerably simplified.
First of all, the constant of motion Eq. (21) can be used to
eliminate R,. Second, since there is only a single phase
variable ¥ on the right-hand sides of Eq. (14), the two
equations for B, and 3, can be replaced by a single equa-
tion for y by using Eq. (11). One can show [66] using
methods similar to those in Ref. [67] that a second con-
stant motion exists for the line and point charge models
when q;N,=gq,N,, the Hamiltonian H. From Eq. (10)
for the line charge model, the Hamiltonian for the special
case when both line charges have the same line charge
density g,N,/L and the same initial cyclotron radius R,
is
2

H=ho R -2 1—cos(y) |2 Ry
1 2meBL R,
R] 411/2
R, ’

(27a)

where we have used the conditions R;(0)=R,(0)=R,
and ¢,N;=¢q,N,. Since H is a constant of motion, the
line charge is constrained to a trajectory of constant H.
The Hamiltonian for the point charge model, Eq. (14), us-
ing these parameters is
H=Aw.R}+ 4y
2meB

X 2 ; 2p 2 49172 "
[2R2—2cos(y)V 2R2R}—R% ]

(27b)

Equation (27) gives some insight into the phase-locking
condition and can be used to calculate graphically the ex-
act phase-locking threshold without solving any
differential equations. Solving the line charge model
Hamiltonian, Eq. (27a), for cosy yields

cosy = 1
V'2(R,/R,)*—(R,/R,)*
2meoBL
X {1—exp ;.E—(chR%—Ho) , (28a)
9N,

where Hy=H(R,=R_, y=7v, is calculated from Eq.
(27a). Similarly, for the point charge model

1

COSY = — (———
R,V 2R2—R?

R 91N,
47eB(Hy—Aw R?)

c

X

2
] . (28b)

A necessary condition is that R; <V2R,_ which follows
from either Egs. (21) or (28). In addition the choice of al-
lowed R, in Eq. (28) is restricted since —1=<cosy < +1
must also be satisfied. Equation (28) allows one to obtain
exact phase-locking thresholds by a simple graphical
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technique. Figure 9 plots cosy versus R, obtained direct-
ly from Eq. (28) with the same parameters as in Fig. 8 at
initial phase separation y,=m/10. As a demonstration,
consider the results in Fig. 9(b) for the point charge mod-
el calculated directly from Eq. (28b). Three different
numbers of ions (N, =N,) are shown. For N, =11X10?
ions the R, vs cosy curve intersects cosy =1 at one point
then continues to cosy =—1 (not shown) for increasing
R. Since all possible values of cosy, and hence ¥, are al-
lowed for this case, the two point charges are not ?hase
locked. On the other hand, when N;=12.5X10° and
N,=14X 10> the curves intersect cosy =1 at two points.
Since R;(0)=1.0 cm and cosy > 1 is not allowed, the al-
lowed values for R (¢) are confined to within the points
of intersection where cosy =1. As seen from Fig. 9, the
range of cosy values is restricted to approximately
0.95 <cosy < 1.0. Since the maximum variation in cosy
does not cover the entire range of —1=cosy < +1, the
two ion clouds are phase locked. Results for the line
charge model are shown in Fig. 9(a) using the same con-
ditions as for the point charge model. For this case the
line charges are locked when N; =60 X 10° but not locked
when N, =55X 10 ions.

1.1
(a) (line charge)
1.05
N, =65 x 10}
] FecuccNpencananccnancnanncnafecafanas
e
» 0.95
(o3
o
09
? 60 x 10°
085 3
(N, =N, 55 x 10
0.8 - "
0.75 1.00 1.25 1.50
R, (cm)
(b) 1.1

(point charge)

12.5 x 10

11x10°

0.8 y .
0.75 1.00 1.25 1.50

R; (em)

FIG. 9. cos(y) vs cyclotron radius R, calculated from Eq.
(28) for the (a) line charge and (b) point charge models. The dy-
namics are constrained to within the region 1>cosy > —1 and
R,<V2R,. Conditions include B=1 T, m;=99.99 u,
m,=100.00 u, ¢,=¢q,=e, N\=N,, R y=R,y=R.=1 cm,
Yo=0.1m.
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It is also possible in principle to derive exact analytical
expressions for the cyclotron phase-locking thresholds
from Eq. (28). As demonstrated for the conditions used
in Fig. 9, the point or line charges are phase locked if
cosy =1 at two points subject to the constraint Eq. (21).
If the initial cyclotron radii are equal to R, then the im-
posed constraint is that the maximum allowable
R,=V2R,.. We take a much simpler though approxi-
mate approach here. As observed from Fig. 9, for the
case of equal initial cyclotron radii, the two line or point
charges are phase locked if cosy >0 at the point

\/2R Using this approach, from Eq. (28a) two line
charges w1th equal line charge density g, N /L and equal
initital cyclotron radii R,, which are initially separated
by 7, in a magnetic field B, are phase locked if their cy-
clotron frequency difference satisfies

91N,

lAw,| < | ———
e 2meoBLR?

In(1—cosy,) (29a)

Similarly, from Eq. (28b) two point charges, each con-
taining charge g, N, are phase locked if

91N, _ 1
2V2meoBR] Vv 1—cosy,

These analytical predictions are compared to numerical
solutions of Eqgs. (10) and (14) in Fig. 10 demonstrating
excellent agreement for most values of ¥, The agree-
ment is not as good in the region y,<<1. A kinematic
model is used below to derive approximate phase-locking
thresholds for this special case which is valid if the initial
separation distance s <<R,.

We find that when y,< /2, if phase locking occurs,
then O<cosy <1.0. When y,>w/2 then —1.0<cosy
<0 if the point charges phase lock. However, if y,=1/2
which implies cosy,=0, we find that phase locking never
occurs. In most experiments the typical initial condition
is ¥9<<1. Below we derive a simple and surprisingly ac-
curate kinematical model for phase locking valid when
Y0<<1. By comparing model calculations for the point
and line charge models (p, =0) with results from numeri-
cal simulations for spherical and cylindrical charge mod-
els (p.>0), the point and line charge models are
parametrized to include finite size ion clouds.

Consider the case m,>m,, q,=q,, N,=N,,
R ;=R =R,, and initial phase separation y(0)=v,. In
a frame of reference moving with m,, and ignoring
Coulomb interactions m approaches m, with a velocity

v, =R.Aw.. Ion cloud m; catches up to m, in a time

Trel™= yo/Aa) When Coulomb interactions are included,
both m, and m, receive an additional cyclotron velocity
component equal to v;= —(E XB)/B? (see the Appen-
dix). Under most conditions, the net effect of v, is to in-
troduce a slight variation in the circular cyclotron orbit
such that the two ion clouds tend to move out of each
other’s way since E = E21 During locked motion,
the ion clouds revolve around each other due to E XB
drift with a period of oscillation on the order of
T4 =msB /E, where s is the initial separation distance be-

lAw, | < (29b)
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tween the two ion clouds. The initial separation is relat-
ed to ¥, by s?=R2X(2—2cosy,), assuming that both ion
clouds have the same initial cyclotron radius. When the
relative cyclotron motion is included and 7; > 7., the ion
clouds likely rotate in perturbed (modulated) cyclotron
orbits with slightly shifted cyclotron frequencies. How-
ever, if 7, <7,y then the ion clouds’ E X B rotation fre-
quency is greater than the cyclotron frequency difference.
For this case, the ion clouds may rotate completely
around each other due to E XB drifts before the ion
clouds can pass each other due to their cyclotron fre-
quency difference. The kinematic condition 7; <7,
defines the cyclotron phase-locking condition
YoE

_, 30
c<7rsB (30)

where E is given by Egs. (9b) and (13b) for the point and

Aw

(a) 800 T T T T
(line charge)
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,,Z 400
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(b) (point charge)
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FIG. 10. Comparison between numerical and analytical
phase-locking thresholds as a function of initial angular separa-
tion y, between ion clouds for (a) the line charge model and (b)
the simple point charge model. The numerical results are
shown as solid circles. Predictions from Eq. (29) and the kine-
matic model Eq. (30) are displayed as solid and broken lines, re-
spectively. For the numerical simulations p. =0 is used. The
numerical phase-locking threshold is calculated by varying the
total number of ions, N; +N, =2N,, until the phase-lock condi-
tion Eq. (26) is satisfied. Equation (26) is equivalent to the state-
ment that the perturbed cyclotron frequencies are equal for the
two ion clouds. Other conditions are R\ (c=R,,=1cm,B=1T,
m;=99.99 u, m,=100.00u, L=5cm, g, =q,=e, Ny=N,.
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line charge models, respectively, with r=s in those ex-

pressions. If the cyclotron radius R, is much greater

than the initial separation s, then s =y,R, and Eq. (30)

reduces to Aw, < E /(mR_.B). Assuming that R, >>s, the

phase-locking condition for the point charge model is
Nig,+Nsyq,

Ao, < ———— . (31)
¢ 47%e,BR. sy

An effective initial ion cloud separation s is substituted
for s in anticipation of including finite ion cloud size
(p,>0) effects. For the simple point charge and line
charge models s.=s. Intuitively, for finite size ion
clouds which are initially completely overlapped, one ex-
pects that s.q is on the order of p.. Similarly, for the line
charge model when R, >>s, Eq. (30) reduces to

Ao, < w : (32)
27 egLBR 5 ¢

In Egs. (31) and (32) the two ion clouds are now allowed
to have different charges and numbers of ions. This is an
approximation based on the results of numerical simula-
tions. Equations (31) and (32) are accurate when
q,N,=¢q,N, and p. <<R_. For example, using the same
parameters as in Fig. 9, we find that two cylindrical ion
clouds phase lock with only 15% more (27% less) ions
when the slower (faster) ion cloud contains 2N —1 ions
while the faster (slower) cloud contains just one ion, com-
pared to the case when both clouds contain N ions each.
Similar results are obtained for spherical ion clouds.
These phase-locking thresholds are based on kinematic
considerations rather than the solution of the dynamical
equations of motion. Their validity needs to be compared
with numerical solutions of the exact equations of
motion. Equatlon (30) is derived assuming that the E X B
drift results in a circular trajectory of each ion cloud
around one another, if the ion clouds have equal total
charges. This is unlikely due to the additional circular
cyclotron trajectory. However, if R, >>s, then at phase
locking the cyclotron trajectory of one ion cloud as seen
by the other cloud is nearly linear over one period of the
E X B drift rotation. When R, >>s, Egs. (31) and (32) are
expected to provide an adequate prediction of the phase-
locking threshold for the simple point charge and line
charge models. Additional numerical simulations em-
ploying finite radius ion clouds have been carried out
which verify the parameter dependences predicted in

Egs. (31) and (32) for the limits R, >>p, and y,=0.
Figure 10 compares results from numerical simulations
(solid circles) with analytical predictions from Eq. (29)
(solid line) and the kinematic approximation Eq. (30)
(broken line) for phase-locking thresholds; the number of
ions N,(N;=N,) in the point charge or line charge re-
quired to produce phase-locking as a function of the ini-
tial phase separation angle y,. The conditions used are
p.=0,N,=N,,Ry=R,;=1cm,B=1T, m;=99.99 u,
m,=100.00 u, and g, =g, =e. For these parameters,
Aw,=(27)15.358 Hz. Figure 10 shows a strong depen-
dence of the phase-locking threshold on the initial angu-
lar separation between ion clouds y,. Qualitatively, since
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Yo and s are related, and the drift velocity direction is
perpendicular to E, larger values for s tend to require a
greater number of ions to induce phase locking. The ion
clouds remain farther apart on average over time for
larger initial separation s than smaller initial separation
distance. The analytical phase-locking results, Eq. (29),
are seen in Fig. 10 to agree very well with the numerical
simulations for most ¥, values. One observes that the ki-
nematic results are in quantitative agreement with the
numerical simulations only for small ¥, corresponding to
§ <<R,, and there is dramatic disagreement when
Yo=m/2. Numerical simulations and Eq. (29) show that
when y,=m/2 the ion clouds do not phase lock at any
number of ions. However, only the case y,<<1 is likely
of experimental significance. In this regime the numeri-
cal and kinematic calculations are in reasonable agree-
ment. Additional numerical simulations demonstrate
that in the limits ¥y <<1 and s <<R_ the number of ions
required to phase-lock two line charges or two point
charges follows the parameter dependences predicted by
the kinematic results, Eq. (31) and (32), respectively.

The ion clouds are likely initially overlapped (y,=0)
at or near the phase-locking threshold. This follows from
the 1/R. dependences in Egs. (31) and (32) which predict
that ion clouds are more likely to phase lock at smaller
cyclotron radii. Assuming that the ion clouds, before cy-
clotron excitation, originate from a single larger ion
cloud aligned along the z axis, then if the ion clouds are
phase locked after excitation they probably were phase
locked before cyclotron excitation. These considerations
indicate that y,=0 for finite size (p. >0) ion clouds at or
near the phase-locking threshold. Simple models which
assume p,=0 such as the point charge or line charge
models are incompatible with the initial condition y,=0
(which implies s =0), since for this case Eqgs. (31) and (32)
predict that, no matter how little charge or how large
Aw,, the two ion clouds are phase locked.

However, if the finite diameter of the ion clouds is in-
cluded, then the clouds phase lock only if a reasonably
large number of ions is present or if Aw, is below a par-
ticular value, even when the ion clouds are initially over-
lapped. The finite size effect is taken into account within
Egs. (31) and (32) by postulating that s is an effective in-
itial separation distance which is on the order of the ion
cloud radius p,. While Egs. (31) and (32) are based on the
point charge and line charge models, respectively, we
propose that they are also correct results for initially
overlapped finite diameter ion clouds as long as s is re-
placed by s.4.

The effective initial cloud separation s is calculated
by parametrization of Eqgs. (31) and (32) with exact nu-
merical simulations using finite size ion clouds. Figure 11
shows results from numerical integration of the exact
equations of motion (solid lines) and fits to Egs. (31) and
(32) (broken lines) as a function of the ion cloud diameter.
The cylindrical and spherical charge model numerical re-
sults are fitted by functions which are linear and quadra-
tic, respectively, in p, which follow from Egs. (31) and
(32). The good fits seen in Fig. 11 support our assump-
tion that 5.4 is proportional to p,. We obtain numerically
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FIG. 11. Numerically calculated phase-locking thresholds
(solid lines) for different radius ion clouds when N, =N, and the
ion clouds are initially completely overlapping. The top and
bottom curves are results for cylindrical and spherical ion
clouds, respectively. The broken lines are best fits of Eqgs. (31)
and (32) to the numerical results assuming that s.; is propor-
tional to p.. Conditions are the same as in Fig. 10.
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With Egs. (33a) and (33b) in Egs. (31) and (32), respective-
ly, the simple point and line charge models give approxi-
mate phase-locking thresholds for finite diameter ion
clouds which are initially completely overlapped. The
effective separation s.4 is on the order of p,, as expected.
In addition, as seen from Fig. 11, spherical ion clouds
phase lock with far fewer ions in general for the range of
diameters shown than cylindrical ion clouds. For exam-
ple, 0.1 cm radius spherical ion clouds phase lock with
about -+ the number of ions required to phase-lock long
cylindrical ion clouds.

Huang et al. [41] have carried out careful FT-ICR ex-
periments with two closely spaced m /Z ion clouds,
demonstrating cyclotron phase locking for a sufficiently
large ion population. In addition, they have observed
that the measured abundances by FT-ICR do not reflect
the true ratio just before phase locking. The lower m /Z
(higher w.) ion cloud has a preferentially enhanced
detected signal compared to the higher m /Z ion cloud.
In Ref. [41] CO"Y (m/Z 27.9944 uw) and N,*
(m /Z 28.0056 u) are studied in two different ratios as a
function of total ion population. In one set of experi-
ments the ratio CO:N,=1:1 was measured at three
different ion populations. Also, the ratio CO:N,=4:11
was studied at four different populations. We shall use
these data as a test case for our theoretical model.

The experimental conditions listed in Ref. [41] include
V,=1V,B=0.7T, and a cubic ICR trap of length L =5
cm. Neither the postexcitation cyclotron radius nor the
electron beam diameter were reported in [41]. Therefore
we present predicted results for two different cyclotron
and ion cloud radii which are considered reasonable.

For simplicity, the smallest and highest m /Z ion
clouds are referred to as m and m,, respectively. The cy-

(spherical charge model)
Seff =
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clotron frequency difference Aw, =(2m)154.03 Hz. The
ion clouds are assumed to initially have the same cyclo-
tron radius and phase. Hence the ion clouds are initially
completely overlapping. With these initial conditions,
the spherical charge model, Egs. (31) and (33a), and the
cylindrical charge model, Egs. (32) and (33b), are used to
predict the minimum total number of ions
N,=gq,N,+4g,N, which produces cyclotron phase lock-
ing. With R,=1.0 cm and p,=0.1 cm, the spherical and
cylindrical charge models predict N,=3.3X10* and
3.8X 10° ions, respectively, for the phase-locking thresh-
old. If R, =2.0 cm and p. =0.2 cm, the spherical and cy-
lindrical charge models predict N,=2.6X10° and
1.5X10% ions, respectively. Experimentally, Huang
et al. [41] find that for m :m,=1:1 the ion clouds are
phase locked at 1.2X 10% total ions but not at 6.9X 10%;
for the ratio m;:m,=4:11, the ion clouds are phase
locked at 1.4X10° ions but not at 6.9X10° ions. Our
predictions based on the cylindrical charge model are in
reasonable agreement with the experimental data. The
spherical charge model underpredicts the phase-locking
threshold for the given parameters. Initially overlapped
charged spheres are much more likely to phase lock than
charged cylinders.

The experimental observation [41] of the variation in
isotope ratios which favors a stronger FT-ICR signal for
m, (CO™) than m, (N,*) can be explained from either
simple kinematics or the cyclotron equations of motion.
If both ion clouds have the same initial cyclotron radius
and are initially overlapping, then after a short time the
faster ion cloud (m ) has moved slightly ahead of m, due
to their difference in cyclotron frequency. Each ion cloud
also gains an additional velocity component in the
—E XB direction due to the ion cloud Coulombic in-
teraction. Since E,,=—E, for N;=N,, simple
geometry shows that m is pushed initially to a larger cy-
clotron radius while the slower m, is pushed to a smaller
cyclotron radius. As seen from Fig. 8(a), the faster ion
cloud m; and slower ion cloud m, have cyclotron radii
which average over time to greater than and less than, re-
spectively, the initial cyclotron radius. This variation in
time-average cyclotron radius increases in magnitude as
the two ion clouds approach the phase-locking threshold.
Since the detected signal in FT-ICR is approximately
proportional to the time-averaged cyclotron radius, the
intensity ratio m,:m, increases as one approaches the
phase-locking threshold. The observed variation in inten-
sity ratios is not due to any preferential loss of ions, but
rather due to differences in cyclotron radius modulation
between the higher and lower m /Z species. The good
agreement between model calculations and experimental
trends strongly supports our contention that ion clouds
near the phase-locking threshold are initially overlapped
just after cyclotron excitation. If, for example, the ion
clouds initially are 7 out of phase then the trend in ob-
served ratios is reversed, namely, the faster m | has a cy-
clotron radius which initially decreases while m, initially
increases.

Additional information concerning trends in frequency
shift and cyclotron radius before and after phase locking
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is obtained by numerical simulations. Figure 12 displays
results of numerical trajectory calculations for two cylin-
drical ion clouds with parameters corresponding to the
experiments of Huang et al. [41]. The solid and broken
lines are results for m; (CO™):m,(N,") in ratios of 1:1
and 4:11, respectively. The parameters used in the simu-
lations include L =5 cm, p.=0.1 cm, R{(0)=R,(0)=1
cm, and B=0.7 T. The ion clouds are initially over-
lapped. Figure 12(a) shows the maximum and minimum
variation in cyclotron radius for m; and m,, respectively.
One observes that as the total number of ions increases
the variation in R, and R, increases up to the point of
phase locking. Figure 12(b) plots differences between
shifted cyclotron frequencies and the average unper-
turbed cyclotron frequency, (w.;+w®,.,)/2. When phase
locked, the two ion clouds have the same frequency. For
low ion number, both m; and m, have small negative fre-
quency shifts. However, as the ion population increases
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FIG. 12. Numerical simulations using cylindrical ion clouds
of the approach to cyclotron phase locking as the total number
of ions increases. Ion cloud 1 represents CO* (m, /Z =27.9944
u) while ion cloud 2 represents N,*(m,/Z=28.0056 u). (a)
The maximum and minimum values of R, and R,, respectively.
(b) Perturbed cyclotron frequencies plotted relative to the aver-
age cyclotron frequency. Phase locking occurs when the two
perturbed cyclotron frequencies are equal. Two different rela-
tive ion populations are shown; N;=N, (solid lines) and
N, =%N2 (broken lines). Other conditions include B=0.7 T,
L=5cm, p,=0.1cm, R ;;=R,,=1cm, B;y=PL=0.
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and nears phase locking, m, eventually has a positive fre-
quency shift. Immediately after phase locking, the ion
clouds do not have frequencies which are simply the
weighted average of their unperturbed cyclotron frequen-
cies. This is evident from the solid curve in Fig. 12(b)
corresponding to N{:N,=1:1 which does not equal zero
relative shift after cyclotron phase locking.

E. Implications of cyclotron phase locking
to mass spectrometry

Cyclotron phase locking sets stringent limits on achiev-
able mass resolution, mass accuracy, and dynamic range
in FT-ICR. If too many ions are confined in an ICR trap
containing closely spaced m /Z’s, a mass spectrum may
not be able to resolve the individual masses due to cyclo-
tron phase locking. Assuming that g¢;=g, and
m,~my~m >>Am, where Am=|m,—m,|, the max-
imum mass resolution m /Am for spherical ion clouds
from Eq. (31) is

m  4m*eoB’R, 5%

<
Am ’

mN, (34)

where N,=N,;+N,; while for the cylindrical charge
model
m__ 27%e,LB?R .S o

e s (35)

The maximum achievable resolution is inversely propor-
tional to m and the total number of ions, and is directly
proportional to B2. These equations do not imply a re-
striction on the width of a single mass peak, but rather
impose limits on the ability to resolve two adjacent mass
peaks. Since phase locking is less likely to occur with cy-
lindrical compared to spherical ion clouds (assuming
equal cloud radii and total charges), absolute limits are
established for the cylindrical charge model. In addition,
we have presented results demonstrating that cylindrical
charge models are more appropriate to most FT-ICR ex-
periments than spherical charge models. For these two
reasons, further discussions are restricted to only the cy-
lindrical charge model.

In most experiments the closest spaced masses of in-
terest are adjacent isotopes. After phase locking, the iso-
tope peaks are unresolvable in FT-ICR since they have
the same detected cyclotron frequencies. Using Eq. (35)
with Am =1 u gives an estimate of the maximum number
of ions N, in two adjacent ion clouds which can be
confined before cyclotron phase locking occurs:

B ZLRCPC

m?

Npax =~ 1.1x 10" , (36)

where B, L, R_, p., and m are given in units of T, cm, cm,
cm, and u, respectively. One should remember that Eq.
(36) assumes that g, =q, and m =~m,=~m,>>1 u. The
most striking feature of N_, is its dependence on
(B /m)* Using typical parameters L =5 cm, R,=1 cm,
and p.=0.1 cm, then N,,,~5.5X10'%B /m)? ions. If
B=1T and m=100 u, N, ~5.5X10° ions. However,
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if B=1T and m =10000 u, then N_,, =550 ions. These
results may help explain the relatively poor performance
of the FT-ICR method at very high m /Z (or at low B)
when there are too many ions with closely spaced m /Z,
an almost inevitable outcome due to the effective isotro-
pic and chemical heterogeneity of these systems.

N max also sets a limit to the maximum dynamic range
achievable in FT-ICR due to cyclotron phase locking. As
a limiting criterion, we choose one ion cloud which con-
tains just a single ion while all other ions are in the
second ion cloud. The maximum dynamic range for adja-
cent isotope peaks is then ~N_,..

Mass accuracy is also sacrificed by cyclotron modula-
tion and phase locking. As seen from Fig. 12(b), immedi-
ately before the ion clouds phase lock, the frequency
shifts have a complicated ion number dependence which
is different for each ion cloud. After the two clouds
phase lock, an FT-ICR experiment measures a single fre-
quency which is not simply equal to the weighted average
of the unperturbed cyclotron frequencies. These results
have important implications for FT-ICR experiments on
high m /Z biomolecules which typically contain many
isotope peaks. For example, mass measurements based
on either the monoisotopic peak or the isotope distribu-
tion [9] are neither exact nor easily calibrated when the
ion clouds are near the phase-locking threshold.

IV. CONCLUSION

This paper investigates the cyclotron dynamics of two
Coulombically interacting ion clouds with different m /Z.
The models of two interacting point charges and line
charges are investigated analytically while exact numeri-
cal simulations are used to study spherical and cylindrical
ion clouds. These simple models exhibit the most impor-
tant space charge effects including frequency shifts, am-
plitude and phase modulation, and cyclotron phase lock-
ing.

When the cyclotron frequencies are far apart and in-
commensurate, the Coulomb interaction primarily results
in frequency shifts. For this situation, the cyclotron radii
do not vary much from their initial values. Frequency
shifts are derived analytically for the simple point charge
and line charge models and compared to exact numerical
results employing spherical and cylindrical ion clouds.
Positive frequency shifts as well as negative frequency
shifts are possible for the point and spherical charge
models when the two ion clouds have different cyclotron
radii. Implications of cyclotron radius dependent, m /Z
independent frequency shifts to FT-ICR mass calibration
are discussed.

When the cyclotron frequency difference Aw, between
ion clouds decreases, cyclotron amplitude and phase
modulation increases. Angular momentum conservation,
Egs. (21), and energy conservation restrict the allowed
variation in cyclotron radius and phase. When the two
ion clouds have very close cyclotron frequencies such
that Aw, =0, the ion clouds may phase lock. At cyclo-
tron phase locking the ion clouds no longer possess two
independent cyclotron motions, but instead evolve with a
single collective cyclotron frequency for the center of
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mass motion and a E X B drift frequency for the relative
motion, where E is the Coulomb electric field between the
two ion clouds. At phase locklng the E X B cyclotron ve-
locity perturbation entrains one ion cloud to the second
ion cloud. Cyclotron phase locking occurs when the
E X B drift dynamlcs dominates the relative cyclotron dy-
namics. Spherical ion clouds are much more likely to
phase lock than cylindrical ion clouds due to the general-
ly stronger radial electric field for small diameter spheri-
cal clouds compared to long cylindrical clouds with the
same diameter and total charge. Our results are com-
pared to previously published experimental data [41].
The present model quantitatively describes the onset of
phase locking as well as the general trends in frequency
shifts and measured abundances just before phase lock-
ing. The implications of cyclotron phase locking for FT-
ICR mass spectrometry are discussed and shown to im-
pose additional limits on achievable resolution, mass ac-
curacy, and dynamic range. After phase locking, adja-
cent isotopes are unresolvable in FT-ICR mass spec-
trometry since they have the same detected cyclotron fre-
quencies in this case. An estimate of the maximum num-
ber of ions N_,, in two ion clouds, which are adjacent
isotopes, at the phase-locking threshold, Eq. (36), predicts
that N, is proportional to (B /m )2
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APPENDIX: GENERALIZED EQUATIONS OF MOTION
FOR A SINGLE ION

The motion of a single ion in a constant magnetic field
directed along the z axis of an azimuthally symmetric
quadrupolar potential is given by [21,23]

x(t)=R ;cos¢,+R _cos¢_ ,
y(t)=—R ,sing, —R _sing_ , (A1)
z(t)= A,cos¢, ,
where
$i=wit+B,
b, =w,t+p, (A2)
These motions are depicted in Fig. 13 for the x-y plane.
The mode amplitudes (R,,R_,A,) and phases

(B+,B_,B,) are constants of motion. If the ion experi-
ences an additional perturbation force F, the trajectory
may still be given by Egs. (A1) and (A2); however, the
mode amplitudes and phases now vary with time. One
can show that the dynamics in the x-y plane for the per-
turbed motion is found by solving the amplitude-phase
equations of motion [23]
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FIG. 13. Geometry of a single m /q(q >0) ion in the z=0
plane showing the cyclotron 7, and magnetron 7_ position vec-
tors. The magnetic field B points in the z direction.

R,=—1
mcop

[F,sing , +F,cosd ],

s 1 .
R_= P [F,sing_+F,cos¢_],

. 11’ (A3)
B+:m[FySin¢+—Fxcos¢+] ,

S S _F s

B_ R_ma, [Fycos¢_—F,sing_],

where 0, =0, —w_ and f=(Fx,Fy,Fz). Equation (A3)
is exact; however, additional flexibility in the choice of
the representation for describing the perturbed motion
can be derived by rewriting Eq. (A3) in vectorial form. In
the new factorial form, the amplitude-phase representa-
tion, Eq. (A3), is just a special case. One starts by rewrit-
ing Eq. (A1) as

x(t)=x,+x_,
(A4)
y)=y,+y_,

where (x,,y.) and (x_,y_) are the Cartesian com-
ponents of the cyclotron and magnetron positions, re-
spectively. By comparing Eq. (A4) with (A1)

xy =R cosdy ,
, (A5)
y+=—"Rysing, .

Equation (AS5) is identical to a simple polar coordinate
transformation (x,y) to (r, —¢). The negative sign indi-
cates that the ion trajectory rotates in the clockwise
direction for a positively charged ion. Taking the time
derivative of Eq. (A5) while allowing R and 3 to be time
dependent yields the dynamical equations for x, and y..
As an example, consider the x , equation,

x.+ :R+COS¢+_R+¢+Sin¢+ . (A6)
Substituting Eqgs. (A2) and (A3) into Eq. (A6) yields

. F,

Xy =01y~ (A7a)

P
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The results for the other components follow similarly:
= 2 (A7b)
Y+ T TO4X T o, ’
Fy
X_=w_y_+ , (A8a)
mao,
Fx
y_=—w_x_— (A8Db)
mo

p

These equations can be written in vectorial form for the
cyclotron and magnetron motion position vectors,
Fi=x41 T+y i] By inspection

Fo= o, 7, ——1— | Xk, (A92)
@p

o= lor +-—L |xk. (A9b)
m(ﬂp

Equation (A9) is the general expression for the cyclotron
and magnetron position vectors. Their solution com-
pletely solves the perturbed ion motion in the x-y plane.
The amplitude-phase representation, Eq. (A3), is a special
case of Eq. (A9). Equation (A9) has a simple physical in-
terpretation in the low m/z limit such that
04 >>w, >>0_, where Op =W, O O, where w_ ~w
With these approximations we have

m-

N N ~ I_;:Xl_‘f

Fo=~w,Fy Xk— 4B , (A10a)

f’_zw X/?+FXB (A 10b)
gB?

If the perturbation force F= qE _then the second terms
on the right of Eq. (A10) are EXB drifts. Equation
(A10b) is simply the magnetron drift velocity expression
where the first term on the right is the rotation due to the
quadrupolar potential and the second term the EXB
drift. The cyclotron mode equation is very similar except
that o, >>w,, and the direction of the E X B drift is op-
posite that for the magnetron mode.

As a further example, consider a polar coordinate sys-
tem (R ;,¢) which rotates with the ion, i.e., Eq. (AS5).
For this case

+F
= Fer
mao,
F (A11)
: _ +
o, Tt
¢r=0wy R.ma,

where F,, is the radial and F,; the azimuthal com-
ponent of F, with the azimuthal angle rotating in the
clockwise direction.
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